Focal adhesion integrity is downregulated by the alternatively spliced domain of human tenascin [published erratum appears in J Cell Biol 1992 Feb;116(3):833]
نویسندگان
چکیده
Tenascin, together with thrombospondin and SPARC, form a family of matrix proteins that, when added to bovine aortic endothelial cells, caused a dose-dependent reduction in the number of focal adhesion-positive cells to approximately 50% of albumin-treated controls. For tenascin, a maximum response was obtained with 20-60 micrograms/ml of protein. The reduction in focal adhesions in tenascin-treated spread cells was observed 10 min after addition of the adhesion modulator, reached the maximum by 45 min, and persisted for at least 4 h in the continued presence of tenascin. This effect was fully reversible, was independent of de novo protein synthesis, and was neutralized by a polyclonal antibody to tenascin. Monoclonal antibodies to specific domains of tenascin (mAbs 81C6 and 127) were used to localize the active site to the alternatively spliced segment of tenascin. Furthermore, a recombinant protein corresponding to the alternatively spliced segment (fibronectin type III domains 6-12) was expressed in Escherichia coli and was active in causing loss of focal adhesions, whereas a recombinant form of a domain (domain 3) containing the RGD sequence had no activity. Chondroitin-6-sulfate effectively neutralized tenascin activity, whereas dermatan sulfate and chondroitin-4-sulfate were less active and heparan sulfate and heparin were essentially inactive. Studies suggest that galactosaminoglycans neutralize tenascin activity through interactions with cell surface molecules. Overall, our results demonstrate that tenascin, thrombospondin, and SPARC, acting as soluble ligands, are able to provoke the loss of focal adhesions in well-spread endothelial cells.
منابع مشابه
Identification of an E-selectin region critical for carbohydrate recognition and cell adhesion [published erratum appears in J Cell Biol 1993 Feb;120(4):1071]
E-selectin elicits cell adhesion by binding to the cell surface carbohydrate, sialyl Lewis X (sLe(x)). We evaluated the effects of mutations in the E-selectin lectin domain on the binding of a panel of anti-E-selectin mAbs and on the recognition of immobilized sLe(x) glycolipid. Functional residues were then superimposed onto a three-dimensional model of the E-selectin lectin domain. This analy...
متن کاملCyclic GMP-dependent protein kinase is required for thrombospondin and tenascin mediated focal adhesion disassembly.
Focal adhesions are specialized regions of cell membranes that are foci for the transmission of signals between the outside and the inside of the cell. Intracellular signaling events are important in the organization and stability of these structures. In previous work, we showed that the counter-adhesive extracellular matrix proteins, thrombospondin, tenascin, and SPARC, induce the disassembly ...
متن کاملTenascin-C promotes neurite outgrowth of embryonic hippocampal neurons through the alternatively spliced fibronectin type III BD domains via activation of the cell adhesion molecule F3/contactin.
Tenascin-C is a multimodular glycoprotein that possesses neurite outgrowth-stimulating properties, and one functional site has been localized to the alternatively spliced fibronectin type III domain D. To identify the neuronal receptor that mediates this effect, neighboring pairs of fibronectin type III domains were expressed as hybrid proteins fused to the Fc fragment of human immunoglobulin. ...
متن کاملFocal Adhesion Kinase (FAK) Involvement in Human Endometrial Remodeling During the Menstrual Cycle
Background: Endometrial remodeling occurs during each menstrual cycle in women. Reports have shown that, in a variety of cell types, processes such as proliferation, signaling complex formation and extra cellular matrix remodeling require a cytoplasmic tyrosine kinase, focal adhesion kinase (FAK). The present study has focused on the expression pattern of FAK in human endometrium during the men...
متن کاملNeuronal cell adhesion molecule contactin/F11 binds to tenascin via its immunoglobulin-like domains
Adhesive interactions between neurons and extracellular matrix (ECM) play a key role in neuronal pattern formation. The prominent role played by the extracellular matrix protein tenascin/cytotactin in the development of the nervous system, tied to its abundance, led us to speculate that brain may contain yet unidentified tenascin receptors. Here we show that the neuronal cell adhesion molecule ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 115 شماره
صفحات -
تاریخ انتشار 1991